

P-Channel -30V (D-S) Power MOSFET

Features

- 100% Avalanche Tested
- Halogen Free, Pb-Free
- RoHS Compliant

Applications

• Relay driver

Parameter

V_{GS}=10V

- Switching circuits
- High-side load switch
- High-speed line driver

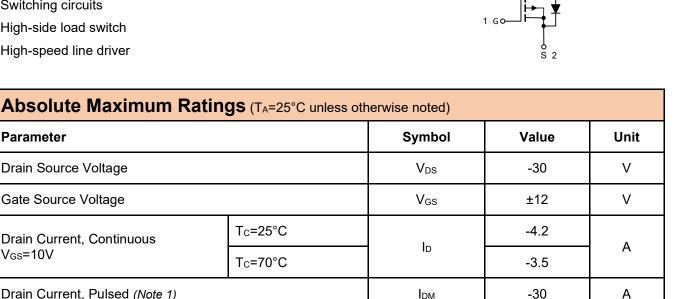
Drain Source Voltage

Gate Source Voltage

Power Dissipation

Drain Current, Continuous

Drain Current, Pulsed (Note 1)


Operating Junction/ Storage Temperature Range

°	
	d en

1.4

-55 to +150

IDM

 \mathbf{P}_{D}

TJ/ TSTG

Note 1: Single pulse; $t_p \leq 1us$.

Thermal Characteristics								
Parameter	Symbol	Max	Unit					
Thermal Resistance Junction to Ambient (Note 2)	R _{thJA}	90	°C/W					

Note 2: Device mounted on 1 square inch FR4 PCB board, with 2oz single-sided copper, in a 25°C still air environment.

Tc=25°C

А

W

°C

GMP3341 GOOD-ARK Electronics

Electrical Characteristics (T _A =25°C unless otherwise noted)							
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Drain Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250µA	-30			V	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-24V, V_{GS} =0V			-1	uA	
Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	V _{DS} =V _{GS} , I _{DS} =-250uA	-0.7		-1.3	V	
Gate Leakage Current	lgss	V _{GS} =±12V, V _{DS} =0V			±100	nA	
Drain-Source On-state Resistance (Note 3) $R_{DS(on)} = \frac{V_{GS}=-10V, I_D=-4.2A}{V_{GS}=-4.5V, I_D=-4A}$	D	V _{GS} =-10V, I _D =-4.2A		39	50		
		48	65	mΩ			
Total Gate Charge	Qg			18		nC	
Gate-Source Charge	Q _{gs}	V _{DS} =-25V, V _{GS} =-10V, I _D =-4A		2.1			
Gate-Drain Charge	Q_gd			2.7			
Turn-on Delay Time	t _{d(on)}			7.5			
Turn-on Rise Time	tr	V _{GS} =-10V, V _{DD} =-15V,		15			
Turn-off Delay Time	t _{d(off)}	R _G =3Ω		26		ns	
Turn-off Fall Time	t _f			3.7			
Input Capacitance	Ciss			712			
Output Capacitance	Coss	V _{GS=} 0V, V _{DS} =-15V, f=1MHz		82		pF	
Reverse Transfer Capacitance	Crss			67			

Reverse Diode Characteristics (T _A =25°C unless otherwise noted)						
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Forward Current, Continuous	Isd	Tc=25°C			-4.2	А
Diode Forward Voltage (Note 3)	V_{SD}	I _F =-1A, V _{GS} =0V		-0.78	-1.0	V

Note 3: Pulse test; pulse width \leq 380µs, duty cycle \leq 1%.

Typical Characteristics Curves (T_A = 25°C unless otherwise noted)

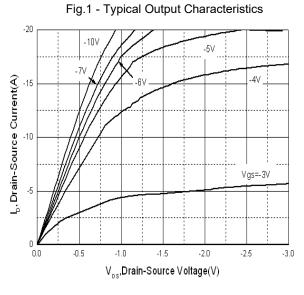
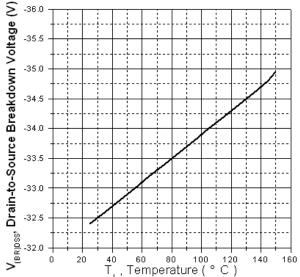
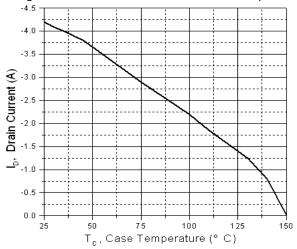




Fig.3 - Drain-to-Source Breakdown Voltage vs. Junction Temperature

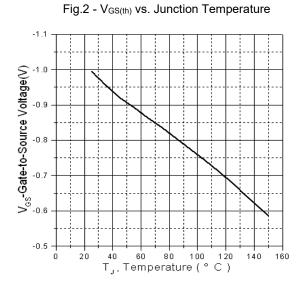
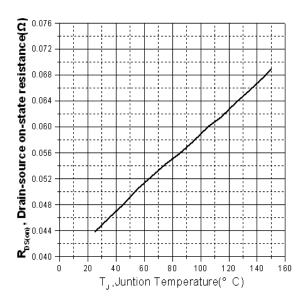
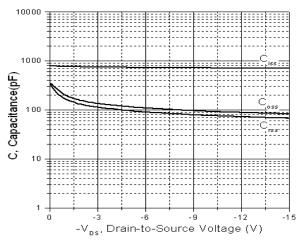
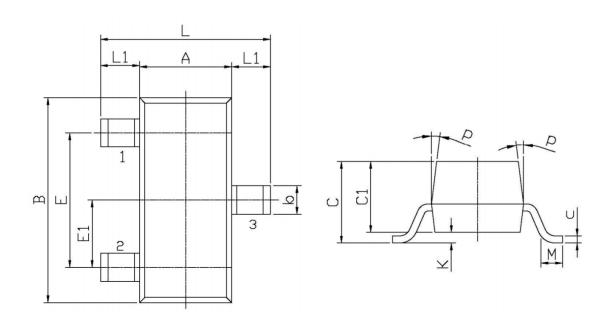
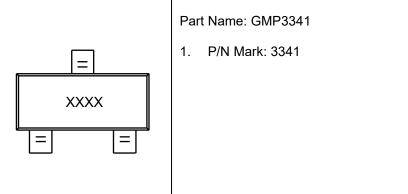


Fig.4 - R_{DS(on)} vs. Junction Temperature


Fig.6 - Typical Capacitance vs. Drain-to-Source Voltage

Package Outline Dimensions (Unit: millimeters)


SOT-23

Dimensions		n Millimeters	Suchal	Dimensions In Millimeters		
Symbol	Symbol Min Max		Symbol	Min	Max	
L	2.2	2.7	С	1.30Max		
L1	0.45	0.65	C1 0.90		1.20	
А	1.15	1.50	50 C 0.05		0.20	
В	2.70	3.10	К	0	0.10	
E	1.70	2.10	М	0.20MIN		
E1	0.85	1,05	Р	7°		
b	0.35	0,55				

Marking Outline

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page. (http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.